Method and apparatus for contacting particulate coal and a deactivating fluid

Abstract

A method and apparatus for contacting particulate coal and a deactivating fluid, the apparatus comprising a mist contacting vessel wherein the coal and a deactivating fluid mist are contacted to produce a coal-deactivating fluid mixture. A method for producing the coal-deactivating fluid mixture is disclosed.

Claims

Having thus described the invention, I claim: 1. An apparatus for intimately contacting a dried low rank coal selected from the group consisting of sub-bituminous, lignite and brown coals with a deactivating fluid to reduce the tendency of said dried low rank coals to spontaneously ignite, said apparatus comprising: a. a contacting vessel, having a particulate coal inlet and a particulate coal outlet, said particulate coal inlet being positioned so that dried particulate coal charged to said contacting vessel through said particulate coal inlet falls through said contacting vessel to said particulate coal outlet; and, b. at least one deactivating fluid mist injection means positioned to inject a mist of a deactivating fluid into said contacting vessel between said particulate coal inlet and said particulate coal outlet to intimately contact said particulate coal with said deactivating fluid as said particulate coal falls through said mist of said deactivating fluid. 2. The apparatus of claim 1 wherein said vessel includes projections positioned on inner walls of said vessel to facilitate intimate contacting of said particulate coal and said mist. 3. The apparatus of claim 2 wherein said mist injection means comprises at least one tubular member including a plurality of mist nozzles positioned on an inner wall of said vessel. 4. The apparatus of claim 3 wherein said tubular member is positioned beneath at least one of said projections. 5. The apparatus of claim 1 wherein at least one deflection means is positioned near said particulate coal outlet to deflect said particulate coal. 6. The apparatus of claim 5 wherein said mist injection means further comprises at least one tubular member including a plurality of mist nozzles positioned beneath said deflector means. 7. A method for intimately contacting a dried low rank coal selected from the group consisting of sub-bituminous, lignite and brown coals with a deactivating fluid to reduce the tendency of said dried low rank coals to spontaneously ignite, said method consisting essentially of: a. charging said coal to a deactivating fluid mist zone so that said coal falls through said mist zone; b. maintaining a mist of a deactivating fluid in said mist zone; c. intimately contacting said coal and said mist to absorb a sufficient quantity of said deactivating fluid onto said coal to produce a deactivated coal as said coal falls through said mist zone; and, d. recovering said deactivated coal. 8. The method of claim 7 wherein said coal is charged to said mist zone at a temperature from about 70° to about 110° F.
This invention relates to methods for producing a dried particulate coal fuel having a reduced tendency to spontaneously ignite from a particulate low rank coal. This invention further relates to an apparatus for intimately contacting a dried low rank coal with a deactivating fluid to reduce the tendency of the dried low rank coal to spontaneously ignite. This invention also relates to a method for intimately contacting a dried low rank coal with a deactivating fluid to reduce the tendency of the dried low rank coal to spontaneously ignite. In many instances, coal, as mined, contains undesirably high quantities of water for transportation and use as a fuel. This problem is common to all coals, although in higher grade coals, such as anthracite and bituminous coals, the problem is less severe because the water content of the coal is normally lower and the heating value of such coals is higher. The situation is different with respect to lower grade coals such as sub-bituminous, lignite and brown coals. Such coals, as produced, typically contain from about 25 to about 65 weight percent water. While many such coals are desirable as fuels because of their relatively low mining cost and since many such coals have a relatively low sulfur content, the use of such lower grade coals as fuel has been greatly inhibited by the fact that as produced, they typically contain a relatively high percentage of water. Attempts to dry such coals for use as a fuel have been inhibited by the tendency of such coals after drying to undergo spontaneous ignition and combustion in storage, transit or the like. The drying required with such low rank coals is a deep drying process for the removal of surface water plus the large quantities of interstitial water present in such low rank coals. By contrast, when higher grade coals are dried, the drying is commonly for the purpose of drying the surface water from the coal particle surfaces but not interstitial water, since the interstitial water content of the higher rank coals is relatively low. As a result, short residence times in the drying zone are normally used, and the interior portions of the coal particles are not heated, since such is not necessary for surface drying. Typically, the coal leaving the dryer in such surface water drying processes is at a temperature below about 110° F. (45° C.). By contrast, processes for the removal of interstitial water require longer residence times and result in heating the interior portions of the coal particles. The coal leaving a drying process for the removal of interstitial water will typically be at a temperature from about 130° to about 250° F. (54° to 121° C.). When such processes for the removal of interstitial water are applied to low rank coals, the resulting dried coal has a strong tendency to spontaneously ignite, especially at the high discharge temperatures, upon storage, during transportation and the like. As a result, a continuing effort has been directed to the development of improved methods whereby such lower grade coals can be dried and thereafter safely transported, stored and used as fuels. It has now been found that such coals are readily dried to produce a stable storable dried coal product by a method comprising: a. charging the particulate low rank coal to a coal drying zone; b. contacting the particulate low rank coal with a hot gas in the coal drying zone to produce a dried coal; c. recovering the dried coal from the coal drying zone; d. charging the dried coal to a coal cooling zone; and, e. cooling the dried coal in the coal cooling zone to a temperature below about 100° F. (38° C.) to produce a cooled, dried coal. The dried coal may be partially oxidized prior to cooling. In such instances, it is desirable to adjust the water content of the dried coal to a value somewhat greater than that desired in the dried oxidized coal product so that a portion of the drying may be accomplished in the oxidation zone. In some instances, it is desirable that the cooled dried coal product be further deactivated by mixing the cooled dried particulate coal product with a suitable deactivating fluid. The particulate coal is suitably contacted with the deactivating fluid in an apparatus and by a method as set forth below. FIG. 1 is a schematic diagram of an embodiment of a process in which the method and apparatus of the present invention are useful. FIG. 2 is a schematic diagram of a further embodiment of a process in which the method and apparatus of the present invention are useful; FIG. 3 is a schematic diagram of an oxidizer vessel; FIG. 4 is a schematic diagram of an embodiment of an apparatus suitable for use in intimately contacting particulate coal and a deactivating fluid; and, FIG. 5 is a schematic diagram of a further embodiment of an apparatus suitable for use in contacting particulate coal and a deactivating fluid. In the description of the Figures, the same numbers will be used to refer to the same or similar components throughout. Further, it should be noted that in the description of the Figures, reference will be made to lines generally rather than attempting to distinguish between lines as conduits, conveyors or the like as required for the handling of particulate solid materials. In FIG. 1, a run of mine coal stream is charged through a line 12 to a coal cleaning or preparation plant 10 from which a coal stream is recovered through a line 14 with a waste stream comprising gangues and the like being recovered and passed to discharge through a line 11. In some instances, it may not be necessary to pass the run of mine coal to a coal cleaning or processing plant prior to charging it to the process. The coal stream recovered from preparation plant 10 through line 14 is passed to a crusher 16 where it is crushed to a suitable size and passed through a line 18 to a hopper 20. While a size consist less than about two inches, i.e. two inches by zero may be suitable in some instances, typically a size consist of about one inch by zero or about three-quarters inch by zero will be found more suitable. The particulate coal in hopper 20 is fed through a line 22 into a dryer 24. In dryer 24, the coal moves across dryer 24 above a grate 26 at a rate determined by the desired residence time in dryer 24. A hot gas is passed upwardly through the coal moving across grate 26 to dry the coal. The hot gas is produced in FIG. 1 by injecting air through a line 30 to combust a stream of coal fines injected through a line 34. The combustion of the coal fines generates a hot gas at a temperature suitable for drying the coal. As will be obvious to those skilled in the art, the temperature can be varied by diluting the air with a non-combustible gas, by the use of alternate fuels, by the use of oxygen enriched streams or the like. Clearly, alternate fuels, i.e. liquid or gaseous fuels could be used instead of or in addition to the finely divided coal, although it is contemplated that in most instances, a stream of finely divided coal will be found most suitable for use as a fuel to produce the heated gas. Ash is recovered from dryer 24 through a line 36. In FIG. 1 a combustion zone 28 is provided beneath grate 26 to permit the production of the hot gas in dryer 24, although it will be readily understood that the hot gas could be produced outside dryer 24 of the like. The exhaust gas from dryer 24 is passed to a cyclone 40 where finely divided solids, typically larger than about 100 Tyler mesh, are separated from the exhaust gas and recovered through a line 44. The exhaust gas, which may still contain solids smaller than about 100 Tyler mesh, is passed through a line 42 to a fine solids recovery section 46 where finely divided solids, which will typically consist primarily of finely divided coal are recovered through line 34 with all or a portion of the finely divided coal being recycled back to combustion zone 28. The purified exhaust gas from fine solids recovery section 46 is passed through a line 48 to a gas cleanup section 50 where sulfur compounds, light hydrocarbon compounds, and the like are removed from the exhaust gas in line 48, as necessary to produce a flue gas which can be discharged to the atmosphere. The purified gas is discharged via a line 51 with the contaminates recovered from the exhaust gas being recovered through a line 76 and optionally passed to a flare, a wet scrubber or the like. The handling of the process gas discharge is not considered to constitute a part of the present invention, and the cleanup of this gaseous stream will not be discussed further. The fine coal stream recovered through line 34 may in some instances constitute more coal fines than are usable in combustion zone 28. In such instances, a fine coal product can be recovered through line 54. In other instances, the amount of coal fines recovered may not be sufficient to provide the desired temperature in the hot gas used in dryer 24. In such instances, additional coal fines may be added through a line 52. The dried coal product recovered from dryer 24 is recovered via a line 38 and combined with the solids recovered from cyclone 40 through line 44 and passed to a hopper 116 from which dried coal is fed via a line 78 to a cooler 80. In cooler 80, the dried coal moves across cooler 80 above a grate 82. A cool gas is introduced through a line 86 into a distribution chamber 84 beneath grate 82 and passed upwardly through the dried coal to cool the dried coal. The exhaust gas from cooler 80 is passed to a cyclone 90 where solids generally larger than about 100 Tyler mesh are separated and recovered through a line 94 with the remaining exhaust gas being passed through a line 92 to fine solids recovery section 46. Optionally, the gas recovered through line 92 could be passed to combustion chamber 28 for use in producing the hot gas required in dryer 24. The cooled dried coal is recovered through a line 96 and combined with the solids recovered from cyclone 90 to produce a dried coal product. The tendency of such dried low rank coals to spontaneously ignite is inhibited greatly by cooling such coals after drying. In some instances, no further treatment may be necessary to produce a dried coal product which does not have an undue tendency to spontaneously ignite upon transportation and storage. In other instances, it will be necessary to treat the dried coal product further. In such instances, the dried coal product may be coated with a suitable deactivating fluid in a mixing zone 100. The deactivating fluid is introduced through a line 102 and intimately mixed with the cooled dried coal in mixing zone 100 to produce a coal product, recovered through a line 104, which is not subject to spontaneous ignition under normal storage and transportation conditions. While the dried coal is mixed with deactivating fluid after cooling in FIG. 1, it should be understood that the dried coal can be mixed with the deactivating fluid at higher temperatures before cooling although it is believed that normally the mixing is preferably at temperatures no higher than about 200° F. (93° C.). While coal gas alone may be used in cooler 80, improved cooling is accomplished in cooler 80 by the use of water injection, as set forth in U.S. patent application, Ser. No. 333,145 filed Dec. 21, 1981, entitled "Improved Process For Cooling Particulate Coal" by Bernard F. Bonnecaze filed of even date herewith. The water is added through a line 106 and a spray system 108 immediately prior to passing the dried coal into cooler 80 or through a spray system 110 which adds the water to the dried coal immediately after injecting the coal into cooler 80. Either or both types of systems may be used. An important limitation, however, is that the amount of water added is only that amount required to achieve the desired cooling of the dried coal by evaporation. The water is very finely sprayed onto the coal, and is controlled to an amount such that the added water is substantially completely evaporated from the coal prior to discharge of the cooled dried coal via line 96. In many areas of the country, relatively dry air is available for use in such cooling applications. For instance, in Wyoming, a typical summer air condition is about 90° F. (32° C.) dry bulb temperature and about 65° F. (18° C.) wet bulb temperature. Such air is very suitable for use in the cooler as described. While substantially any cooling gas could be used, the gas used will normally be air. Air is injected in an amount sufficient to fluidize or semi-fluidize the dried coal moving along grate 82 and in an amount sufficient to prevent the leaking of water through grate 82. The flow is further controlled to a level such that the velocity above the coal on grate 82 is insufficient to entrain any liquid water in the exhaust stream flowing to cyclone 90. Such determination are within the skill of those in the art and need not be discussed in detail since the flow rates will vary depending upon the amount of cooling required and the like. In a further variation, water may in some instances be introduced as a fine mist beneath grate 82 via a spray system 109 and carried into the coal moving along grate 82 with the cooling gas. In such instances, similar considerations apply, and only that amount of water is added which is required to accomplish the desired temperature reduction in the coal on grate 82. When relatively dry air is available, it may be desirable in some instances to use evaporative cooling outside cooler 80 to produce a cooled air stream for use in cooling the dried coal in cooler 80. In the operation of dryer 24, the discharge temperature of the dried coal is typically from about 130° to about 250° F. (54° to 121° C.) and is preferably from about 190° to about 220° F. (88° to 104° C.). The hot gas is passed upwardly through the coal on grate 26 at a suitable rate to maintain the coal in a fluidized or semi-fluidized conditiond above grate 26. The residence time is chosen to accomplish the desired amount of drying and is readily determined experimentally by those skilled in the art based upon the particular type of coal used and the like. For instance, when drying sub-bituminous coal, an initial water content of about 30 weight percent is common. Desirably, such coals are dried to a water content of less than about 15 weight percent and preferably from about 5 to about 10 weight percent. Lignite coals often contain in the vicinity of about 40 weight percent water and are desirably dried to less than about 20 weight percent water with a range from about 5 to about 20 weight percent water being preferred. Brown coals may contain as much as, or in some instances even more than about 65 weight percent water. In many instances, it may be necessary to treat such brown coals by other physical separation processes to remove portions of the water before drying is attempted. In any event, these coals are desirably dried to a water content of less than about 30 weight percent and preferably to about 5 to 20 weight percent. The determination of the residence time for such coals in dryer 24 may be determined experimentally by those skilled in the art for each particular coal. The determination of a suitable residence time is dependent upon many variables and will not be discussed in detail. The water contents referred to herein are determined by ASTM D3173-73 entitled "Standard Test Method for Moisture in the Analysis Sample of Coal and Coke", published in the 1978 Annual Book of ASTM Standards, Part 26. The discharge temperature of the dried coal from dryer 24 is readily controlled by varying the amount of coal fines and air injected into dryer 24 so that the resulting hot gaseous mixture after combustion is at the desired temperature. Temperatures beneath grate 26 should be controlled to avoid initiating spontaneous combustion of the coal on grate 26. Suitable temperatures for many coals are from about 250° to about 950° F. (104° to 510° C.). In the operation of cooler 80, the temperature of the dried coal charged to cooler 80 in the the process shown in FIG. 1 is typically that of the dried coal discharged from dryer 24 less process heat losses. The temperature of the dried coal is desirably reduced in cooler 80 to a temperature below about 100° F. (38° C.) and preferably below about 80° F. (27° C.) The cool gas is passed upwardly through the coal on grate 26 at a rate to maintain the coal in a fluidized or semi-fluidized condition. The residence time, amount of cooling air, cooling water and the like may be determined experimentally by those skilled in the art. Such determinations are highly dependent upon the amount of cooling required and the like. As well known to those skilled in the art, after drying, lower rank coals are very susceptible to spontaneous ignition and combustion upon storage, in transit or the like. While such is the case, it is highly desirable that such coals be available for use more widely than is possible at the present. The high moisture content of these fuels results in excessive shipping costs, due at least in large measure to the excessive amount of water which is subject to freight charges and similarly results in lower heating values for the coals since a substantial portion of the coal is water rather than combustible carbonaceous material. The lower heating value results in a limited use for the coals since many furnaces are not adapted to burn such lower heating value coals. By contrast, when the water content is reduced, the heating value is raised since a much larger portion of the coal then comprises combustible carbonaceous material. As a result, it is highly desirable that such coals be dried prior to shipment. In many instances, it has been found that cooling such dried coals to a temperature below about 100° F. (38° C.) and preferably below about 80° F. (27° C.) is sufficient to inhibit spontaneous ignition of the dried coal. Not all dried low rank coals will be found to be sufficiently non-reactive to permit storage and transportation without further treatment after cooling, but in many instances, such dried low rank coals are sufficiently non-reactive after cooling that spontaneous ignition is avoided. It has been observed that spontaneous ignition of such dried low rank coals is further inhibited by the use of a suitable deactivating fluid to further reduce the tendency of the dried coal to spontaneously ignite as discussed more fully hereinafter. The deactivating fluid is desirably applied by intimately mixing it with the dried coal to produce a dried coal product having a reduced tendency toward spontaneous combustion. The use of the deactivating fluid also reduces the dusting tendencies of the coal. A further method for reducing the tendency of the dried coal to spontaneously ignite is the use of a controlled oxidation step after the coal drying operation and prior to cooling the dried coal. Such a variation is shown in FIG. 2 where the dried coal is passed through line 38 to a coal oxidizer vessel 60. The dried coal is charged to oxidizer 60 and passes downwardly through oxidizer 60 from its upper end 62 to its lower end 64 at a rate controlled to obtain the desired residence time. The flow of dried coal downwardly through oxidizer 60 is controlled by a grate 66 which supports the coal in oxidizer 60 and accomplishes the removal of controlled amounts of dried oxidized coal through line 78. Air is injected into oxidizer 60 through a line 68 and an air distribution system 70 as shown more fully in FIG. 3. Air distribution system 70 comprises a plurality of lines 122 having suitable openings (not shown) positioned along their length for the discharge of air into oxidizer 60 with lines 22 being positioned beneath shields 120. Shields 120 serve to prevent clogging of the air discharge openings in lines 122 and to prevent damage to lines 122 by the downcoming coal. Spaces 124 between shields 120 are provided for the passage of coal between shields 120 and spaces 124 are typically sized to be at least three times the diameter of the largest coal particles expected in width. Oxidizer 60 also includes a coal distribution system 112 which may be of a variety of configurations known to those skilled in the art for the uniform distribution of particulate solids. Exhaust gases are recovered from oxidizer 60 through a line 72 and as shown in FIG. 2 passed to gas cleanup section 50 for processing prior to discharge. Grate 66 may be of a variety of configurations known to those skilled in the art for supporting and removing controlled amounts of a particulate solids stream passing downwardly through a reaction zone to result in uniform downward movement of particulate solids through the reaction zone. One such suitable grate is shown in U.S. Pat. No. 3,401,922 issued Sept. 17, 1968, to J. B. Jones, Jr. which is hereby incorporated in its entirety by reference. The grate shown in FIG. 3 is of the type disclosed in U.S. Pat. No. 3,401,922 and comprises retarder plates 121 positioned across the bottom of oxidizer 60 and pusher bars 123 to remove desired quantities of dried oxidized coal while supporting dried coal in oxidizer 60. Diverter plates are shown as shields 120 for air injection lines 122. A star feeder or the like 125 is included in line 78 to prevent the flow of air through line 78 as the dried oxidized coal is withdrawn. The operation of the grate shown is described in U.S. Pat. No. 3,401,922 which has been incorporated by reference. Air could be injected at a higher point in oxidizer 60 or at a plurality of points, but it is presently preferred that substantially all of the air be injected near the bottom of oxidizer 60. The oxidization of the dried coal in oxidizer 60 results in a further reduction in the tendency of the dried coal to spontaneously ignite. The dried oxidized coal is cooled in cooler 80 as described in conjunction with FIG. 1 and may be usable as a stable product without the need for mixing with a deactivating fluid. A method and apparatus for oxidizing such coal is set forth in U.S. patent application, Ser. No. 333,143, filed Dec. 21, 1981, entitled "Method and Apparatus for Oxidizing Dried Low Rank Coal" by Donald K. Wunderlich, filed of even date herewith. In the oxidation of the dried coal in oxidizer 60, a continuing problem is the tendency for the coal to become progressively hotter as it oxidizes. It is desirable that from about 6 to about 25 lbs. of oxygen per ton of dried coal be used. A preferred range is from about 6 to 15 lbs. of oxygen per ton oe coal. The use of such amounts of oxygen results in the liberation of substantial quantities of heat. To maintain temperature stability in oxidizer 60, it has been found desirable to restrict the drying in dryer 24 to somewhat less than is desired in the final dried oxidized coal product. In other words, less drying is accomplished in dryer 24 than is desired in the dried oxidized coal product. In many instances, it will be desirable to leave from about 1 to about 5 weight percent water above that amount of water desired in the final dried oxidized product in the dried coal stream when it is to be oxidized. The presence of the additional water results in cooling the dried coal during oxidization by evaporation of the water. The amount of water left in contemplation of the oxidization step is desirably the amount required to remove the heat generated by the desired oxidizaton by evaporation. In most instances, it will be found desirable to leave from about 1 to about 3 weight percent water above that amount required in the dried product in the dried coal stream passed to oxidizer 60 when from 6 to about 15 lbs. of oxygen per ton of coal is used. The dried oxidized product recovered from cooler 80 in many instances will be usable as a dried coal product as recovered. In other instances, it may be desirable that a suitable deactivating fluid be mixed with the dried oxidized coal product to produce a stable storable fuel. The intimate mixing of the dried coal and deactivating fluid is readily accomplished in a vessel such as shown in FIG. 4. In FIG. 4, the dried coal product or dried oxidized coal product is charged to a contacting vessel 140 through a line 146 with the contacted coal being recovered through a line or discharge 148. In contact vessel 140, the deactivating fluid is maintained as a finely divided mist by spraying the deactivating fluid into vessel 140 through spray mist injection means 150 which, as shown in FIG. 4, are nozzles 152. Clearly, vessel 140 can be of a variety of configurations, and any reasonable number of mist nozzles 152 can be used. It is, however, necessary that the residence time between the upper end 142 of contacting vessel 140 and the lower end 144 of vessel 140 be sufficient that the coal is intimately contacted with the deactivating fluid as it passes through vessel 140. Deactivating fluid is injected into vessel 140 through lines 158 which supply nozzles 152. Optionally a diverter 143 may be positioned to disrupt the flow of the coal to facilitate contact with the deactivating fluid. A further embodiment of a suitable contacting vessel is shown in FIG. 5. The contacting vessel shown in FIG. 5 is positioned on a storage hopper 162 and includes on its inner walls a plurality of projections 154, which serve to break up the smooth fall of particulate coal solids through vessel 140 thereby facilitating intimate contact of the particulate solids with the deactivating fluid mist present in vessel 140. Projections 154 may be of substantially any effective shape or size. Mist injection means 150 as shown in FIG. 5 comprise tubes 156 positioned beneath projections 154. Tubes 156 include a plurality of mist injections nozzles 152. Further, a deflector 160 is provided near lower end 144 of vessel 140 to further deflect the stream of particulate coal solids as they are discharged from vessel 140. A tube 156 including mist nozzles 152 is positioned beneath deflector 160. In the operation of vessels 140 shown in FIGS. 4 and 5, a particulate coal stream is introduced into the upper portion of vessels 140 and passes downwardly through vessel 140 by gravity flow in continuous contact with a finely divided mist of a suitable deactivating fluid. The residence time is highly variable depending upon the size of the stream passed through vessel 140, the presence or absence of projections in vessel 140, and the like. The contact time and amount of mist are adjusted to obtain a desired quantity of deactivating fluid in intimate mixture with the coal. Some suitable deactivating fluids are separated from the group consisting of virgin vacuum rendered crude oils. Such materials are normally mixed with the dried coal in quantities from about one-half to about two gallons of material per ton of dried coal as described in U.S. patent application, Ser. No. 333,137, filed Dec. 21, 1981, entitled "Deactivating Dried Coal With a Special Oil Composition" by Donald K. Wunderlich filed of even date herewith. Preferably, from about one to about one and one-half gallons is used. Such materials have been found to inhibit the reactivity of the dried coal with respect to spontaneous ignition to a high degree. While Applicant does not wish to be bound by any particular theory, it is believed that the heavy oil material may tend to coat the surfaces of the coal particles thereby plugging off small pores and reducing the amount of reactive surface available for oxidization. Other mechanisms are clearly possible, but it is clear that the use of such materials remarkably inhibits the tendency of the dried coal fuel toward spontaneous ignition and combustion. When such materials are used, it is often necessary to operate the spray nozzles at an elevated temperature especially when heavy materials are used. Temperatures of 250° F. (120° C.) or higher may be required. Further air or another gas, which may optionally be heated, may be used to atomize the sprayed material. Such variations in the mist spraying are considered to be known to those skilled in the art. Other deactivating fluids are disclosed in U.S. Pat. No. 4,201,657 issued May 6, 1980 to Anderson et al. and U.S. Pat. No. 4,265,637 issued May 5, 1981 to Anderson, both of which are hereby incorporated in their entirety by reference. Other suitable materials for use as deactivating fluid are selected from aqueous solutions of polymeric materials as described in U.S. patent application, Ser. No. 333,146, filed Dec. 21, 1981, entitled "Reducing the Tendency of Dried Coal to Spontaneously Ignite" by J. David Matthews filed of even date herewith. Some suitable polymeric materials are: vinyl acetate, polyvinyl chloride, vinyl acetate/acrylic polymers, styrene-butadiene, acrylic latex or resins, natural gums and resins, tall oil, neoprene, rubber and the like. The reference to solutions of polymeric materials should be understood to encompass dispersions of polymeric materials and emulsions of polymeric materials. The primary requisite in the polymeric material is its ability to inhibit the tendency toward spontaneous ignition in the dried coal fuel. Desirably, the polymeric material contains no halogens. As is well known to those skilled in the art, the presence of halogens in coal is extremely detrimental to boiler operation and the like and further, the industry has relatively stringent specifications on the amount of halogens tolerable in coal fuels. Accordingly, it is undesirable that the polymeric material chosen contained halogen materials. In the use of such aqueous solutions of polymeric materials, it has been found that the quantities of solution required will vary widely dependent on the amount of polymer required for coal deactivation, the concentration of polymer in the solution and the like. The determination of a suitable quantity is within the skill of those in the art based on the consideration noted above. In the practice of the method shown in FIGS. 1 and 2, which is described in U.S. patent application, Ser. No. 333,142, filed Dec. 21, 1981 entitled "A Method for Producing a Dried Coal Fuel Having a Reduced Tendency to Spontaneously Ignite From a Low Rank Coal" by Ying Hsiao Li, J. David Matthews, James L. Skinner, Bernard F. Bonnecaze, and Donald K. Wunderlich filed of even date herewith, it may be desirable in some instances that an oxidation step be used, whereas with other coal feed stocks, such a step may not be necessary. In general, it is believed that it will be necessary to dry and cool all low rank coals to produce a desirable dried coal fuel which is not undesirable susceptible to spontaneous ignition. In many instances, it may be necessary to do no more than dry the coal and cool the resulting dried coal to produce a stable fuel. In other instances, it may be necessary to use a deactivating fluid with the dried coal. In still other instances with more reactive coal, it may be necessary to use drying in combination with oxidation and cooling and/or a deactivating fluid. The selection of the particular process will be dependent to a large extent upon the particular coal feed stock used. Another variable which may affect the choice of the process for a particular low rank coal may be the risk involved upon spontaneous ignition. For instance, it may be desirable to over-treat dried coal products which are to be shipped by sea or the like in view of the substantially greater risk of damage upon spontaneous ignition than would be the case for coals which are to be stacked near a coal-consuming facility. A multitude of considerations will affect the particular process chosen; however, it is believed that the particular combination of steps set forth will be found effective in the treatment of substantially any low rank coal to produce a dried fuel product which has a reduced tendency toward spontaneous ignition. Having thus desired the present invention by reference to certain of its preferred embodiments, it is respectfully pointed out that the embodiments discussed are illustrative rather than limiting in nature, and that many variations and modifications are possible within the scope of the preset invention. Many such variations and modifications may be considered obvious and desirable based upon a review of the foregoing description of preferred embodiments.

Description

Topics

Download Full PDF Version (Non-Commercial Use)

Patent Citations (4)

    Publication numberPublication dateAssigneeTitle
    US-2844886-AJuly 29, 1958Kellogg M W CoTreatment of carbonaceous solids
    US-3985517-AOctober 12, 1976Hydrocarbon Research, Inc.Coal passivation process
    US-4008042-AFebruary 15, 1977Coaltek AssociatesCoal heating temperature control
    US-4201657-AMay 06, 1980Conoco, Inc.Coal spray composition

NO-Patent Citations (0)

    Title

Cited By (16)

    Publication numberPublication dateAssigneeTitle
    DE-112011104409-B4June 02, 2016Mitsubishi Heavy Industries, Ltd.Kohledeaktivierungsvorrichtung
    US-2009255173-A1October 15, 2009Satoru Sugita, Tetsuya Deguchi, Takuo ShigehisaProcess and equipment for producing solid fuel by using coal as raw material
    US-4498905-AFebruary 12, 1985Atlantic Richfield CompanyMethod for deactivating and controlling the dusting tendencies of dried particulate lower rank coal
    US-4501551-AFebruary 26, 1985Atlantic Richfield CompanyMethod for producing a dried particulate coal fuel from a particulate low rank coal
    US-4547198-AOctober 15, 1985Atlantic Richfield CompanyMethod for discharging treated coal and controlling emissions from a heavy oil spray system
    US-4564369-AJanuary 14, 1986The Standard Oil CompanyApparatus for the enhanced separation of impurities from coal
    US-4615710-AOctober 07, 1986Atlantic Richfield CompanyMethod and apparatus for discharging treated coal and controlling emissions from a heavy oil spray system
    US-4650495-AMarch 17, 1987Mobil Oil CorporationMethod for stabilizing dried low rank coals
    US-4705533-ANovember 10, 1987Simmons John JUtilization of low rank coal and peat
    US-5137539-AAugust 11, 1992Atlantic Richfield CompanyMethod for producing dried particulate coal fuel and electricity from a low rank particulate coal
    US-5863304-AJanuary 26, 1999Western Syncoal CompanyStabilized thermally beneficiated low rank coal and method of manufacture
    US-6090171-AJuly 18, 2000Western Syncoal CompanyStabilized thermally beneficiated low rank coal and method of manufacture
    US-6558442-B2May 06, 2003Entac, Inc.Synthetic fuel production method
    US-8252070-B2August 28, 2012Kobe Steel, Ltd.Process and apparatus for producing solid fuel from coal
    US-9090843-B2July 28, 2015Kobe Steel, Ltd.Apparatus for producing solid fuel from coal
    US-9290711-B2March 22, 2016Mitsubishi Heavy Industries, Ltd.Coal deactivation apparatus